8,479 research outputs found

    A worldwide model for boundaries of urban settlements

    Full text link
    The shape of urban settlements plays a fundamental role in their sustainable planning. Properly defining the boundaries of cities is challenging and remains an open problem in the Science of Cities. Here, we propose a worldwide model to define urban settlements beyond their administrative boundaries through a bottom-up approach that takes into account geographical biases intrinsically associated with most societies around the world, and reflected in their different regional growing dynamics. The generality of the model allows to study the scaling laws of cities at all geographical levels: countries, continents, and the entire world. Our definition of cities is robust and holds to one of the most famous results in Social Sciences: Zipf's law. According to our results, the largest cities in the world are not in line with what was recently reported by the United Nations. For example, we find that the largest city in the world is an agglomeration of several small settlements close to each other, connecting three large settlements: Alexandria, Cairo, and Luxor. Our definition of cities opens the doors to the study of the economy of cities in a systematic way independently of arbitrary definitions that employ administrative boundaries

    A universal approach for drainage basins

    Full text link
    Drainage basins are essential to Geohydrology and Biodiversity. Defining those regions in a simple, robust and efficient way is a constant challenge in Earth Science. Here, we introduce a model to delineate multiple drainage basins through an extension of the Invasion Percolation-Based Algorithm (IPBA). In order to prove the potential of our approach, we apply it to real and artificial datasets. We observe that the perimeter and area distributions of basins and anti-basins display long tails extending over several orders of magnitude and following approximately power-law behaviors. Moreover, the exponents of these power laws depend on spatial correlations and are invariant under the landscape orientation, not only for terrestrial, but lunar and martian landscapes. The terrestrial and martian results are statistically identical, which suggests that a hypothetical martian river would present similarity to the terrestrial rivers. Finally, we propose a theoretical value for the Hack's exponent based on the fractal dimension of watersheds, γ=D/2\gamma=D/2. We measure γ=0.54±0.01\gamma=0.54 \pm 0.01 for Earth, which is close to our estimation of γ≈0.55\gamma \approx 0.55. Our study suggests that Hack's law can have its origin purely in the maximum and minimum lines of the landscapes.Comment: 20 pages, 6 Figures, and 1 Tabl

    Magnetic-field effects in defect-controlled ferromagnetic Ga_{1-x}Mn_xAs semiconductors

    Full text link
    We have studied the magnetic-field and concentration dependences of the magnetizations of the hole and Mn subsystems in diluted ferromagnetic semiconductor Ga_{1-x}Mn_xAs. A mean-field approximation to the hole-mediated interaction is used, in which the hole concentration p(x) is parametrized in terms of a fitting (of the hole effective mass and hole/local moment coupling) to experimental data on the Tc critical temperature. The dependence of the magnetizations with x, for a given temperature, presents a sharply peaked structure, with maxima increasing with applied magnetic field, which indicates that application to diluted-magnetic-semiconductor devices would require quality-control of the Mn-doping composition. We also compare various experimental data for Tc(x) and p(x) on different Ga_{1-x}Mn_xAs samples and stress the need of further detailed experimental work to assure that the experimental measurements are reproducible.Comment: RevTeX 4, 3 two-column pages, 4 colour figures; to appear in J Appl Phy

    A smartphone-based multi-sensor wireless platform for cycling performance monitoring

    Get PDF
    In recent years there has been a significant evolution regarding applications for mobile devices that provide location-based services. The mobile devices available on the market already provide a set of integrated sensors and it is also possible to acquire data from external sensors. This chapter presents the development and results concerning a mobile sensing platform applied to cycling which performs data collection using both sensors integrated in the smartphone and multiple wireless sensor nodes, which are used to acquire relevant performance parameters. The data collected by the developed mobile app is stored in a local database and also uploaded to a remote database, where it can be accessed later using the mobile app or a web browser. This mobile app allows users to share data with friends, join or create events, locate friends, consult graphs and access past routes in a map. Based on these functionalities, this system aims to provide detailed feedback regarding the user performance and enhance the enjoyment of the cyclists.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the project: UID/EEA/04436/2013.info:eu-repo/semantics/publishedVersio
    • …
    corecore